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Abstract

Enterprise Local Area Networks (LANs) face increasing threats from self-propagating worm
ransomware that disrupts operations and encrypts data. Traditional intrusion detection sys-
tems rely on static rules that fail against adaptive malware. Reinforcement Learning (RL)
offers a promising approach for developing autonomous cybersecurity agents capable of
learning optimal defensive strategies through interaction with their environment. However,
existing studies often rely on simplified network models, single unreliable detectors, and
overlook unsafe defensive actions that can cause data loss and network downtime. This
study develops an adaptive RL-based defense framework in Microsoft’s CyberBattleSim,
formalized as a Partially Observable Markov Decision Process (POMDP). The framework
integrates three key mechanisms: (1) a multi-detection system combining network- and node-
level detectors, (2) probabilistic shielding to reduce unsafe actions and preserve data and
network availability, and (3) a trust-based belief update mechanism that weights detector
outputs. Experimental results demonstrate that multi detection system improves both train-
ing stability and defensive performance compared to single detection system. Probabilistic
shielding minimizes data and network availability losses, both of which are key indicators
of LAN resilience, while enabling the agent to learn an optimal policy. The trust system
further enhances tactical precision by ensuring that belief updates accurately reflect detector
reliability and confidence.

Keywords: Reinforcement Learning, Adversary Agent, Worm Ransomware, Cybersecu-
rity, Partially Observable Markov Decision Process (POMDP), Shielding, Trust

1. INTRODUCTION

Enterprise Local Area Networks (LANSs) are collections of interconnected devices within a small,
confined geographic area, such as a home, office, or building [1]. LANSs allow for resource sharing
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like printers, files, and internet access [1]. LANs are vulnerable to cyberattacks, particularly worm
ransomware. This malware autonomously spreads, encrypts files, alters data, and disrupts normal
operations [2—4]. Reports highlight its severity: ENISA 2024 lists it among top EU cybersecurity
threats, Verizon DBIR 2025 recorded over 12,000 breaches with most involving ransomware, IBM
estimates average breach costs at $4.44 million, and NETSCOUT reports 8.91 million global attacks
in late 2024 [5-8].

Traditional Intrusion Detection and Prevention Systems (IDS/IPS) rely on static rules targeting
specific threats and are insufficient against adaptive malware [9—12]. Reinforcement Learning (RL)
enables agents to learn optimal defensive strategies through continuous interaction [13—18]. RL
defenders can traverse LANs automatically to repair, patch, and restore infected nodes. Previous
work trained RL agents in POMDP-simulated LANs [19—-22], but real-world applicability is limited.

Prior RL approaches to cyber defense present several limitations. Many rely on oversimplified envi-
ronments that ignore network interdependencies, node attributes, and realistic traffic patterns. This
can produce RL agent decision making that do not generalize against sophisticated ransomware [23,
24]. Many approaches rely on a single detector, giving incomplete network visibility [25]. Critical
LANSs aspects such as data loss and network availability are often ignored, including consequences
of hard resets or unnecessary node isolation [22]. They also reply on the assumption of perfect
detector reliability that may mislead the agent when detectors provide incorrect observations [26].

To address these limitations, we use CyberBattleSim [19], with realistic network topologies, node
attributes, and traffic patterns. The problem is formalized as a Partially Observable Markov Decision
Process (POMDP), where the defender cannot directly observe the underlying state and detectors
provide noisy observations. The defender must prevent attacks and remediate infected nodes in real
time, while the attacker aims to infect as many nodes as possible and reach critical servers. Our
approach improves RL cybersecurity agent training and enables optimal policy learning through
three integrated mechanisms. First, a novel multi-detection system combines network-level and
node-level detectors to provide a more complete view of the network, addressing limitations of
single detectors. Second, a novel probabilistic shielding constrains unsafe actions, such as hard
resets and unnecessary node isolation, preventing data loss and maintaining network availability.
Third, a novel trust system for detectors in LAN evaluates the outputs of network and node-level
detectors based on their historical reliability, and incorporates trust-based belief updates to maintain
accurate probabilistic beliefs over hidden network states. However, other studies such as [27, 28]
focuses on trust between agents, our approach applies trust directly to the detectors, allowing the RL
agent to make more informed and reliable decisions even when observations are noisy or partially
incorrect.

This study makes the following contributions. First, a multi-detection system that provides the RL
agent with a more improved view of the network under partial observability. Second, probabilistic
shielding that constrains unsafe actions to reduce potential data loss and network downtime that
may occur during agent exploration. Third, a detectors’ trust-based belief update system in LAN
that evaluates their reliability over time and maintains accurate probabilistic beliefs over hidden
states to enhance the agent’s decision-making precision under uncertainty.

The remainder of this article is organized as follows. Section 2 reviews prior work and identifies
key research gaps. Section 3 states research questions. Section 4 introduces foundational con-
cepts including POMDPs, RL algorithms, trust mechanisms, and probabilistic shielding. Section 5
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presents the proposed defender agent architecture, detailing the POMDP formulation, neural particle
filtering for belief maintenance, multi detection system, trust system, and probabilistic shielding for
safe exploration. Section 6 describes the experimental methodology, training procedures, validation
protocols, evaluation metrics, and presents results. Section 7 interprets the experimental findings,
providing mechanistic explanations for observed performance patterns and algorithm-specific be-
haviors. Section 8§ summarizes the key contributions and outlines directions for future research.

2. RELATED WORK

LAN as POMDP. Cyber defense under uncertainty can be modeled as a Partially Observable
Markov Decision Process (POMDP), where the network state is partially observed through detectors
and actions affect system dynamics [19, 20, 29]. Authors in [29], and [30], showed that deep
RL policies can learn effective defense strategies in these environments. Authors in [11, 31]
demonstrated that learned environment models help policies adapt to dynamic attacks. However,
many studies rely on hand-crafted transition and observation models with fixed probabilities and
simple node dependencies. This limits realism because they cannot capture complex interactions
between nodes, adaptive adversaries, or multi-detector uncertainty. Authors in [32] extended
POMDPs to multi-agent RL for cooperative defense, but often treated nodes independently and
separated safety from learning, reducing the effectiveness of coordinated defense. These limitations
can produce overconfident policies and unsafe exploration. Our approach addresses these gaps by
combining learned environment dynamics with trust-weighted probabilistic belief states, enabling
robust multi-agent decision-making under partial observability.

Single detection systems. Authors in [18], and [25], relied on a single detector to observe
network states, often aggregating all signals into a single estimate. This approach fails to cap-
ture the diversity of network signals and makes policies vulnerable to noise, missed detections, or
compromised detectors. Authors in [33], showed that multi-detector fusion improves robustness in
robotics, but integration into RL-based cyber defense is limited. The lack of multi-detector support
in prior RL approaches reduces resilience and increases the risk of unsafe actions when detector
readings are unreliable. Our work maintains trust-weighted beliefs over multiple detectors, allowing
the agent to discount unreliable signals and make robust decisions under partial observability.

Trust in detectors. Authors in [28], and [27], studied trust in multi-agent systems, usually
between agents. Authors in [34], explored decentralized trust frameworks, but these frameworks
are applied only to agent-to-agent interactions, not to detectors in LAN cyber defense. Authors
in [18, 25], assume all detectors are perfectly reliable, giving full trust to every reading. This
assumption can lead to poor policy performance when detectors are noisy. In contrast, we apply
trust directly to each detector, enabling the agent to weight signals adaptively and ignore unreliable
or adversarial observations during belief updates and action selection. This explicitly addresses a
major gap in current RL-based cyber defense research.

Probabilistic shielding and safe RL. Current RL-based cyber defense research often ignores
LAN operational principles, allowing agents to “win the game” by taking actions that cause un-
necessary data loss or network downtime, such as hard resets or isolating nodes without cause.
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When studies do consider operational constraints, they rely on hard-coded safety rules, such as in
[32], which prevent unsafe actions but limit exploration and ignore uncertainty in state estimates.
Such approaches fail to balance learning effectiveness with operational safety. Probabilistic shield-
ing [35], provides a flexible mechanism, guiding the agent toward actions that are both effective and
safe. Our work integrates shielding with trust-weighted beliefs over multiple detectors, allowing
agents to respect LAN principles, reduce data loss, maintain network availability, and still learn
efficiently under partial observability.

3. RESEARCH QUESTIONS

To guide the research gaps investigation, we pose the following research questions:

RQ1: How does a multi-detector system impact an RL agent’s learning performance compared to a
single-detector system in partially observable network defense scenarios?

RQ2: How well does probabilistic shielding help RL agents explore safely and prevent data or
availability loss without hurting their performance?

RQ3: How do trust mechanisms for detectors improve agent learning under noisy detector observa-
tions, and how does trust interact with shielding to enhance policy safety and effectiveness?

4. PRELIMINARIES

This section introduces the fundamental concepts underlying our approach. The details of specific
implementations are provided in Section 5.

4.1 Partially Observable Markov Decision Process (POMDP)

A POMDP extends an MDP by introducing uncertainty in state observability, defined as (S, A, O, T, Q, R, y),
where S is the state space, A is the action space, O is the observation space, T'(s, a, s”) is the transition
function, Q(s’, a, 0) is the observation function, R(s, @) is the reward function, and y € [0, 1] is the
discount factor [36]. Since the true state s is not directly observable, the agent maintains a belief

state b, which is the probability distribution over possible states, updated via Bayes’ rule:

b'(s")=n-Q(s",a,o) Z T(s,a,s")b(s), (1)

seS

where 7 is a normalization constant. The policy 7 (») maps beliefs to actions to maximize expected
cumulative discounted return G, = Y. YK ka1
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4.2 Single and Multi-Detection Systems

In cybersecurity and network monitoring, agents often rely on detectors to observe the environment.
A single-detector system uses one source of information to estimate network state. In contrast,
a multi-detection system aggregates observations from several detectors, improving accuracy and
robustness. Formally, let o; denote the observation from detector i. In a multi-detection system, the
belief state update can be expressed as:

b(s") =0 ) Ploi | s') ) T(s.a.5)b(s). 2)

seS

where 77 is a normalization constant, 7' (s, a, s”) is the transition function, and b(s) is the prior belief
over states. This aggregation allows the agent to reduce the effect of noisy or unreliable detectors. In
our work, we used a multi-detector setup where BeliefNet combines the outputs of multiple detectors
into a probabilistic estimate of node states. This improves belief estimation compared to relying on
a single detector [25], enabling more robust decision-making under partial observability.

4.3 Reinforcement Learning Algorithms

Standard RL algorithms (DQN [37], A2C [37], PPO [38]) are designed for fully observable MDPs
where agents have direct access to state s. In POMDPs, these algorithms operate on belief repre-
sentations rather than true states. We used three algorithms:

* Deep Q-Learning (DQN): Learns action-value function Q (b, a) using neural networks with
experience replay and target networks to stabilize training [37].

» Advantage Actor-Critic (A2C): Combines policy gradients (actor) with value estimation
(critic) using advantage function A(b, a) = Q(b,a) — V(b) to reduce variance [37].

« Proximal Policy Optimization (PPO): Constrains policy updates via clipped objective LEL1F (9) =
E; [min(r; () A;, clip(r;(0),1 — €, 1 + €) A;)] to ensure stable learning [38].

4.4 Trust and Shielding Mechanisms

Trust. A trust score T € [0, 1] quantifies the reliability of an information source based on histor-
ical accuracy [39, 40]. In our work, trust is used to weight the contributions of different detectors
when updating the belief state over network nodes. This allows the agent to rely more on accurate
detectors and mitigate the influence of noisy detectors. In contrast, prior studies in multi-agent RL
primarily use trust to weight agent interactions or to guide cooperation [34, 35], whereas we adapt
it for detectors and belief update.

Shielding. A shield defines a set of safe actions Ag,g (s) € A(s) for each state s, preventing unsafe
behaviors during learning [41]. We implement probabilistic shielding by assigning safety probabil-
ities P(safe|s, a) to candidate actions, which guides the RL agent towards safer interventions while
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still allowing exploration. Compared to prior work, which typically uses hard coded rules to strictly
prevent unsafe actions during exploration or execution [35, 42, 43], our approach uses probability
shielding to soft reduce selection of unsafe actions.

4.5 Learned Transition and Observation Models

Classical POMDP methods such as value iteration and policy iteration) assume known 7 and Q
models [36]. In adversarial cyber defense, these models are unknown and analytically intractable
due to high-dimensional state spaces, complex node interactions, and adaptive adversaries. Prior
RL approaches either use handcrafted models [29] or ignore belief maintenance entirely [12].

BeliefNet (Byet):  Our observation model. Instead of specifying Q(s’, a, 0) analytically, BeliefNet
learns the likelihood P(o|s) using a neural network trained on detector confidence distributions.
Given state s and observation o, BeliefNet outputs p = Byet(s, 0), approximating how likely
observation o would be under state s. This is trained via cross-entropy loss against probabilistic
labels derived from detector softmax outputs:

Loetier = = ), 7 log Bra(s,07), (3)
J

where p/) is the target probability from detector confidences.

StateNet (Spet): Our transition model. Instead of handcrafting T'(s, a, s”), StateNet learns next-
state prediction: §;41 = Spet(ss, a;). Trained via mean squared error:

Ltate = E[||Snet(s7,ar) — St+1||2]’ 4)

using true state transitions observed during simulation.

Integration with Particle Filtering: BeliefNet and StateNet replace the prediction and weighting
steps in standard particle filtering [44]:

1. Prediction: st(i) =

Snet(sfi)l, a,_1) + €, where € ~ N(0, 0-2I) adds process noise.
2. Weighting: wii) = Bnet(st(i),o,), then normalize w[(i) — wii)/Zj wz(j).

3. Resampling: Draw N particles proportionally to weights.

This approach enables model-free belief maintenance: no handcrafted transition or observation
functions required. BeliefNet and StateNet learn environment dynamics directly from experience,
making our architecture scalable to envrionment where explicit POMDP specifications are infeasi-
ble.
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Figure 1: RL defender agent architecture

5. PROPOSED REINFORCEMENT LEARNING DEFENDER
ARCHITECTURE

Our RL agent operates as a belief-based reinforcement learning system with integrated shielding
mechanisms, trust system, and multi detection system ( see FIGURE 1). At the core, the RL
agent (Defender) (hereafter referred to as the Blue agent and adversary as the Red agent) receives
belief states rather than direct environment observations and selects defensive actions based on
learned policies. To integrate the safety mechanism, we implemented a Shielding module that
acts as a safety layer between the agent and environment, evaluating proposed actions for safety
before execution and down-weighting unsafe actions to ensure high-probability of safe actions
reach the environment. We further designed a Multi detection system that comprises two parallel
detectors: a Network detector monitoring network traffic and agent positions, and a Node detector
observing node telemetry and status information. These detectors produce observations that feed
into the belief update system. We added a Trust module that maintains and updates trust scores
for each detector based on their historical accuracy, weighting detector observations according to
their reliability. Finally, the Belief update system then maintains a probabilistic belief over the
actual environment state by fusing multi-detector observations weighted by trust scores. Rather
than relying on handcrafted models, it uses learned neural network approximations of the transition
function and observation function within a particle filtering framework to update beliefs and provide
the Blue agent with belief states rather than raw observations. Our architecture operates as a closed
loop: environment states generate detector observations, which are weighted by trust scores and
fused into belief representations; the Blue agent processes these beliefs to propose actions; the
shielding module filters these actions for safety; safe actions execute in the environment; and reward
signals (potentially modified by shielding) return to the agent for policy learning.
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5.1 Multi Detection System

In the proposed architecture, the Blue agent perceives the environment through machine learning—
based detectors. These detectors formalise the observation process in the POMDP formulation,
where the true system state is hidden and must be inferred probabilistically [45, 46]. To overcome
the limitation of single-detector reliance, we integrated both network and node detectors. Two detec-
tor provide the Blue agent with probabilistic observations. In order to understand how the detectors
work and what information they will process, we first need to define in detail node attributes and
network traffic, two crucial elements for these detectors.

Node Attributes. Each node was instrumented with attributes reflecting its configuration and
operational state. These included:

» Exposed services: Secure Shell (SSH), Remote Desktop Protocol (RDP), Hypertext Transfer
Protocol (HTTP/HTTPS), File Transfer Protocol (FTP), Server Message Block (SMB), My
Structured Query Language (MySQL), and Internet Control Message Protocol ping (PING)
[46, 47].

» Exploitable vulnerabilities: enabling local and remote attacks such as privilege escalation,
credential leakage, denial of service, lateral movement, file encryption, and SQL injection
[48].

* Node-level indicators: CPU usage, memory utilisation, disk space, registry keys, and file
system integrity [49].

» Red agent flag: a binary indicator of whether the node is infected.

The core observable attribute vector A,, for each node’s status estimation is defined as

Ap =A{un, mp, dn, frsTns fWas Vi, Sfas ¥ frs Xn ks (%)

where u,, denotes CPU usage, m,, the memory utilisation, and d,, the available disk space. The
variable f;, captures the file system state (either access or encrypted), while r, is a binary indi-
cator of Red agent presence. Structural security properties are represented through fw,, for firewall
configuration, v, for exploitable vulnerabilities, s f, for system files, and r f,, for registry entries.
Finally, x,, expresses the machine’s overall operational state, which may be Running or Stopped.

Network Traffic. In addition, the environment was extended with a traffic generator [46] to
emulate legitimate background communications between nodes. Each traffic entry, Ty, contained
features, x, such as the source node, which specifies where the traffic originates; the destination
node, which indicates where the traffic is sent; the service type, describing the protocol or service
used to transmit the traffic; and the encryption status, which identifies whether the traffic is en-
crypted or plaintext [46]. Now that we have explained node attributes and network traffic, we can
explain our detectors.

1. Node Detector: The Node Detector Dy4e is a probabilistic logic function that estimates the
operational status of each node n by analysing the combination of values in its attribute vector
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Ay, defined in Equation 5, and mapping them to an estimated status Dyoqe from the discrete
set Shode. This is formalised as follows:

A

Drode : An ¥ Drodes  Drode € Snodes

where
Snode = {Normal, UnsecuredFirewall, UnsecuredVul, At risk,

Compromised, Critical, Encryption, Stopped}.

Here, Normal denotes a healthy node, UnsecuredFirewall or UnsecuredVul indicate ex-
posure through weak firewall rules or exploitable vulnerabilities, At risk captures combined
weak firewall rules and exploitable vulnerabilities, Compromised reflects confirmed mal-
ware or attacker presence, Critical represents severe degradation where malware is con-
firmed present with weak firewall rules and exploitable vulnerabilities, Encryption indicates
ransomware-induced file encryption, and Stopped denotes a node that is completely inactive.
To handle uncertainty and nonlinear attribute interactions, the detector Dyoq. implements a
probabilistic scoring mechanism. It first assigns rule-based scores to each candidate status
Snode € Snode based on the node’s attributes A,. These scores reflect the degree of evidence
supporting each potential status.

These scores are then transformed into a probability distribution using a softmax function
[50, 51]:

score(Snode | A )

rode|An) ©)

node

e
P(Snode | An) =

core
gScor (s

’
Shode €Shode

This posterior probability quantifies how likely node n is to be in status syode, given the current
values of its attributes A,,. The detector also computes the prediction confidence level, which
is defined as the highest probability assigned among all status classes. In other words, the
confidence level is simply the maximum probability from this distribution [50, 51]:

conf, = max P(Snode | An) (7)

Snode € Snode

It quantifies how strongly the detector supports the most likely status, given the available
attribute evidence, and is subsequently used to weight observation likelihood during belief
updates and when training the observation model. The final estimated node status Dhode 18
determined by selecting the class spode € Snode that maximizes the posterior probability:

Dnode = arg  max  P(snode | An)
Snode €Snode

Example: Status Prediction. To illustrate the node-level inference process, consider a
simplified telemetry snapshot from a Windows Workstation node:

cpu_usage = 91
memory_usage = 88
disk_space = 45
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files_status = "encrypted"
red_agent_installed = True
machine_status = Running

firewall config = "ALLOW:HTTP,FTP,RDP"
vulnerabilities = ["REMOTE", "LOCAL"]
system_files = ["malware.exe", ...]
registry_keys = {"HKLM": "compromised"}

Using Equation (6) for the scoring function, each candidate status is assigned a score based
on this telemetry. After normalisation, the detector outputs the following probabilities:

P(Normal) = 0.0001,
P(UnsecuredFirewall) = 0.0003,
P(UnsecuredVul) = 0.0004,
P(Atrisk) = 0.0010,
P(Compromised) = 0.0012,
P(Critical) = 0.015,
P(Encryption) = 0.982,
P(Stopped) = 0.016.

The most probable class is therefore:

@node = Encryption, conf, = 0.982

This outcome reflects a high-confidence detection of an ongoing encryption event consistent
with ransomware behaviour.

Network Detector. The Network Detector Dyer generates two hidden state components
from traffic logs: (i) the Red agent’s current position and (ii) the node under attack. The
Diet architecture comprises three XGBoost machine learning models [52], trained offline on
synthetic traffic generated from CyberBattleSim simulations during the pre-training phase
of RL agents. These logs emulate both normal and malicious traffic within a controlled
LAN environment, ensuring consistency between the detector and RL policy training. The
sample of the dataset can be found here https://github.com/VinceTaku/RL_training
experiment_results/blob/main/network_traffic.csv.

A comparative evaluation was performed across four classifiers—XGBoost, Support Vector
Machine (SVM), Random Forest (RF), and a Feedforward Neural Network (FNN)—following [53].
XGBoost achieved the highest accuracy across all detection tasks, confirming its suitability

for this system.

Each traffic entry T, passes through this multi-stage pipeline: Dy, first flags malicious
activity, after which D,.q and D,y infer the adversary’s location and target respectively.

Confidence Level Outputs. Given a traffic feature vector x, Dieq and D,y produce un-
normalised logits f(x) = [z1,...,2k], where K is the number of nodes. Probabilities are
obtained using softmax:
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Table 1: Network Detector sub-modules and their purpose.
Detector | Role
Dmal Malicious Traffic) | Binary classifier; distinguishes benign from mali-
cious traffic.
Dred (Red agent Position) | Multi-class; estimates attacker location in the LAN.
Dt (Node Under Attack) | Multi-class; predicts which node is being targeted.

(ni) = —=
Conf(n;) = ——
ZK

. b
ez

i=1,...,K. (8)
j=1

These distributions satisfy ZiK:1 Conf(n;) = 1 and quantify the detector’s confidence over
possible Red agent positions and attack targets. The resulting confidence vectors are integrated
into the observation model during belief updates.

5.2 Problem Formulation

The Blue agent decision process is formalized as a POMDP, introduced earlier, M = (S, A,0,T, Q,
R,v), where the agent operate under uncertainty and receive noisy, incomplete observations of the
environment. In addition, in this work adopted a model-free formulation. That is, 7" and € are not
known a priori, but are instead approximated directly from data using neural networks, enabling the
agents to learn effective policies without relying on handcrafted models of the environment. This
ensures scalability to complex and realistic network scenarios where explicit models are analytically
intractable. This implementation integrates deep learning techniques inspired by Deep Particle
Filter Networks (DPFN) [54]

The Blue agent’s action space is

patch_node,
update_firewall_rules,
isolate_node,
reset_node,

Aplye = { restore_node,
decrypt_node,
lateral_move,

secure_harden_node,

do_nothing

The Blue agent perceives the system through node and network detectors:
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pos_blue : Blue agent position,

pos_red : Red agent position from Dieq,
node_att : Target node from Dy,

n_stat_att : Status of target node,
n_stat_pos_red : Red pos. status from Dypgge,
n_stat_pos_blue : Blue pos. status from Dyode

Oblue =

A typical single detector will have the Blue agent perceives the system as:

pos_blue : Blue agent position,
Obple = { n_stat_pos_red_inferred : Inferred Red pos. status from Dyode,
n_stat_pos_blue : Blue pos. status from D4

The single detector produces an observation with node status and the blue agent position, but
lacks network-level activities. Crucially, the defender does not receive direct adversary position
(pos_red); instead, it must rely on simple status changes (n_stat_pos_red_inferred) to infer the
Red agent’s location, making it fragile and prone to delayed reactions [12, 30, 55, 56]. The transition
model specifies the probability of moving between states given an action. In practice, the full
transition dynamics are unknown and analytically intractable due to high-dimensional dependencies.
Therefore, we approximate T using a neural network, enabling a model-free approach that learns
transition patterns directly from experience. The observation model defines the probability of an
agent receiving a particular observation given the true state. For the Blue agent, this is informed
by the confidence distributions of Dyege and Dyer. As with T, the observation process is complex
and uncertain. We therefore parameterise Q with a neural network, allowing the agent to learn an
observation likelihood function from data rather than relying on handcrafted rules. This model-free
treatment ensures scalability to more realistic environments where explicit models are unavailable.
In a simplified way, the Blue agent is rewarded for restoring nodes to a Normal state, slowing or
stopping the Red agent’s progress, and maintaining the availability of critical services, and penalised
for the exact opposite. A discount factor y € (0,1) ensures that the blue agent prioritise fast
progression toward its goals by seeking to neutralise threats quickly.

5.3 Observation Model (BeliefNet)

The observation model € is not explicitly defined but learned through a neural network we refer to
as BeliefNet (Bet). Its purpose is to approximate the likelihood of receiving an observation o, given
the true hidden state s,. BeliefNet is critical for particle filtering, as it assigns weights to particles
based on how well they explain the observed detector outputs.

Bret ® P(o; | 51).

At each simulation step ¢, the simulator provides access to the true system state s;. In parallel,
detectors for the Blue agent produce confidence scores over candidate observation attributes using
Equations 6, 7, and 8. These confidences define a probability distribution over possible obser-
vations that could arise from state s;. Specifically, for each attribute (for example node status,
Red position, attack target), the detector outputs a categorical distribution. By taking the Cartesian
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()M " cach with an

product over all attributes, we construct a set of candidate observations {o, =1
associated probability p/) computed as the product of individual attribute probabilities (assuming
conditional independence given s,). These probabilities are normalised to sum to one. The result is
a training triplet (s;, ot(J ), p)), which expresses how likely each candidate observation ot(J ) would
be under the true state s,, according to the detectors’ confidence distributions. Importantly, p/)

serves as a probabilistic label reflecting observation likelihood, not a binary ground truth.

Bhet 1s trained in an offline manner at the end of each simulation episode. During an episode, all
triplets (s;, 0,(] ), p)) are accumulated into a replay buffer. After the episode concludes, BeliefNet
is updated using mini-batches sampled from this buffer, optimised with stochastic gradient descent
(Adam optimizer, learning rate 10~*). This episodic, replay-style training ensures that the networks
generalise across diverse trajectories and do not overfit to the most recent observations, while still
capturing the evolving attack and defence dynamics. BeliefNet is trained in a supervised manner
to minimise the divergence between its predicted probabilities p/) = By (sy, ot(j )) and the target
probabilities p/) obtained from detector confidences. By minimising this loss, BeliefNet learns to
predict observation likelihoods that align with the detector’s probabilistic assessments, effectively
learning P(o|s) from data. This is achieved using a cross-entropy loss:

Lbelief = — Z pY log ptv).
J

BeliefNet is implemented as a fully connected feedforward neural network with three hidden layers
of dimensions [256, 128, 64], ReLU activations, and a final softmax output layer. The input is a
concatenated vector representation of the state s, and observation ot(J ), and the output is a scalar
probability /).

5.4 Learning State Transitions (StateNet)

In classical POMDPs, belief updates rely on a predefined transition model T'(s” | s,a), which
specifies the probability of moving from a state s to a next state s* given an action a. In realistic,
adversarial cybersecurity settings, such a model is unknown or infeasible to specify explicitly. To
address this, we introduce StateNet Syet, a neural function approximator that replaces the hand-
crafted transition model. Blue agent maintains its own variant called BlueStateNet for defensive
transitions. This network learn how system states evolve in response to the respective agent’s
actions. During simulation, we record triples (s;, a;, s;+1), where s; is the true current state obtained
from the simulator, a, the action taken by the Blue agent), and s, the resulting true next state after
the action’s execution. Sy is trained to minimise prediction error between their estimated next state
and the observed next state. The loss is defined as:

Lare(6) = E [”SH(Sts ar) — St+1”2] )

where Sy denotes StateNet parameterised by 6.

StateNet is implemented as a fully connected feedforward neural network with four hidden layers of
dimensions of 512, 256, 128, and 64, using ReLU activations. The input is a concatenated vector of

349



https://cybersecurityjournal.info// | December 2025 Takudzwa V. Banda and Gavin B. Rens

the current state s; (encoded as a fixed-size vector) and a one-hot encoding of action a;. The output
is a predicted next state vector §;.1. Training is performed offline at the end of each episode using
accumulated state-action-next-state samples stored in a replay buffer. Mini-batches of size 128 are
sampled randomly, and the network is updated using the Adam optimizer with learning rate 10~%.
This episodic training allows the networks to generalise across diverse trajectories, capturing both
attack dynamics and defensive interventions, without requiring explicit knowledge of true transition
probabilities.

During particle filtering, StateNet is used to propagate particles forward: given a particle state s

t
and action a,, the predicted next state is st(:)l = agent(s,(’), ay). To account for stochasticity in

transitions, Gaussian noise with standard deviation o = 0.1 is added to continuous state components
after prediction. StateNet requires sufficient training data before it can reliably predict transitions.
During the first 50 episodes, particles are propagated using the simulator’s ground truth transitions
with added noise to maintain uncertainty. After 50 episodes, StateNet predictions are used exclu-
sively. This warm-up period ensures stable belief updates during early training when the transition
model is poorly calibrated.

5.5 Particle Filtering and Belief Update

Particle filtering is used to maintain a probabilistic belief b, over hidden states. We maintain
N = 500 particles for computational efficiency. At each time step ¢, the particle filter performs
the following operations:

1. Prediction (for each particlei = 1,...,N):
s,(i) = Snet(st(i)l, ai-1) +€&, €&~ N(0, a?I)
where S is the learned StateNet and ¢; represents process noise.
2. Weighting (for each particlei =1,...,N):
wii) = Bnet(s,(i), 1)

where B, is the learned BeliefNet that outputs observation likelihood.

3. Normalization:

N .
E . ; w
7 = W;J), thenfori=1,...,N: Wil) P
Jj=1 7

4. Resampling: Draw N particles proportionally to {w,(i) };L, using systematic resampling [44].

This procedure removes the need for hand-crafted transition or observation models. Instead, Spet
and B¢ approximate T and Q from experience, enabling belief updates in high-dimensional and
adversarial settings.
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5.6 Probabilistic Shielding

A key challenge in reinforcement learning for cyber defence is that agents may take actions that,
while technically valid, undermine the defender’s primary objectives of preserving network avail-
ability and preventing data loss. Prior work often ignored this risk, leaving RL policies vulnerable
to catastrophic behaviour. To address this gap, we implement Probabilistic Shielding as a soft safety
layer that down-weights unsafe actions during policy selection [41] .

The shield assigns each action a probability of safety P(safe | s,a) given the current state and
action. This probability scales both the policy distribution and the reward:

Tshielded (@@ | S) & ”base(a | S) - P(safe | s, a),

Tshielded = 7 - P(safe | s,a).

Here, mpase (a | s) is the original policy distribution output by the RL algorithm, P(safe | s, a) is the
safety probability computed by the shield, mgpiciged(@ | §) is the adjusted safe policy (renormalised
after scaling), r is the original reward, and rgpieided 1S the safety-aware reward.

The shield modifies the learning signal by directly altering received rewards to include a cost for
unsafe actions, implicitly guiding the agent to avoid certain states or actions. This differs from
traditional reward shaping, which provides intermediate rewards for desirable behaviours; here, we
penalise undesirable behaviours proportionally to their risk [41]. Two actions were treated as unsafe
due to their direct impact on system reliability:

» isolate_node: reduces network availability by disconnecting nodes.

» reset_node: lead to data loss by deleting or erasing system files.

Probabilistic Logic Shielding [41] formulates safety as a set of probabilistic rules. Each rule encodes
a property such as “resetting a node is unsafe” and assigns a probability to capture the uncertainty of
that violation. In the original formulation, probabilities are attached to logical clauses, often derived
from domain knowledge or formal system models.

In this work, we adapt this principle to the cyber defence setting by grounding safety probabilities
in the node detector confidence levels (Equation 7), which reflect the detector’s certainty about the
node’s current status. Let ¢, € [0, 1] denote the node detector’s confidence that node n is in a
risky status Critical, Encryption, or Stopped. FIGURE 2 is the safety probability, which is defined
as a piecewise function that considers both the node status and action type, where 87 = 0.45 and
B2 = 0.5 are hyperparameters controlling the strength of the safety constraint for isolate and reset
node respectively. Higher values of B result in stronger discouragement of unsafe actions. The
exponential decay ensures that:

* Actions on nodes flagged with high confidence (c,, — 1) are strongly discouraged

* Actions on uncertain nodes (c¢,, ~ 0) remain available with minimal penalty
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e Bren ifa = isolate_node,
P(safe | s,a,n) = { e7P2n . g[status, ¢ {Critical, Encryption, Stopped}], ifa = reset_node,

1.0, otherwise.

Figure 2: Safety probability definition used in the Probabilistic Shielding mechanism.
5.7 Trust Modelling

We incorporate detector trust into the belief update. The central idea is that detectors are imperfect,
and their reliability should evolve over time based on observed accuracy rather than being assumed
constant. Trust modelling provides a mechanism to weight detector contributions proportionally
to their performance overtime [36, 39].Trust scores are maintained for three detector classes: node
status (Dhode), Red agent position (Dreq), and attack target (Dy). Trust scores are initialised at
To = 0.1, Ty = 0.15, ,and Ty = 0.05 for (Dpoge), (Dred), and (Dqy) respectively, representing initial
uncertainty about detector reliability. At every time step 7, each detector’s prediction is compared
against the ground truth state (available from the simulator for training purposes). Let ¢, € {0, 1}
denote whether the detector’s prediction was correct:

¢; = ¥[detector prediction = true state attribute]

Trust is updated using a logistic growth process:
T =T+ BT, (1 -T1) cy,

where 8 = 0.05 controls the growth rate. This ensures that:

* Trust grows slowly with each correct prediction
» Growth rate slows as trust approaches 1.0 (saturation effect)
* Incorrect predictions (¢, = 0) result in no update, preventing trust decay but slowing growth

¢ Trust remains bounded in [0, 1]

This conservative update rule reflects that trust should be earned gradually through consistent accu-
racy, preventing over-reliance on detectors that may occasionally be correct by chance. During the
particle filter’s weighting stage, trust scores amplify particles that agree with high-trust detectors
and dampen those that disagree. If w; is the base weight of particle i, its trust-adjusted weight is

’
W;=Ww;:- M; (Tstatus> Treds Tattack)

Here Tytatus, Tred> and Tayack denote the evolving trust scores of node status (Dyoqe), Red agent posi-
tion (Dreq) respectively. Each T € [0, 1] represents the long-term reliability of the corresponding
detector. The multiplier M;(-) combines these values to reward particles that agree with high-trust
detectors and down-weight those that conflict, thereby embedding source reliability directly into the
belief update process.
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5.8 Belief-to-RL Input and Reward Function

To support reinforcement learning in a partially observable setting, the agent must operate on a
single state representation at each time step. The particle filtering process begins with a set of
unweighted particles sampled from the prior or proposal distribution, representing hypotheses about
the true environment state. These particles are then evaluated against incoming observations to
compute importance weights, with each particle receiving a weight proportional to the likelihood
of the observations given that particle’s hypothesized state. This transformation converts an initial
uniform particle bag into a weighted particle set that concentrates probability mass on states most
consistent with the observed data, producing a belief state representation:

. . N
b= {0

where each st(i) € S is a discrete particle and wz(i) € [0, 1] is its normalized weight reflecting the
posterior probability of that state hypothesis given the observation history.

The goal is to derive a single representative state §, for use in reinforcement learning (RL) state
input and reward computation. Different strategies can be used such as Maximum Weight (MAP),
Soft Mode Voting (Fieldwise), Observation-Matching, Top-K Nearest to Aggregated Mode, and
Weighted Feature Aggregation [44, 57, 58].

This work uses Weighted Feature Aggregation because of its simplicity, and able to handle high
dimensional space. Weighted feature aggregation is used to transform the belief state into a compact
vector representation suitable for reinforcement learning. Each particle contributes according to its
weight, and features are combined into a single encoding that reflects the agent’s current belief
distribution. This ensures that the input to the learning algorithm captures both the underlying
state information and the uncertainty over possible states, providing a consistent interface between
probabilistic reasoning and policy optimisation [36, 59].

5.9 Reinforcement Learning Algorithms

Three RL algorithms were evaluated as Blue agent policies: Proximal Policy Optimization (PPO),
Deep Q-Network (DQN), and Advantage Actor-Critic (A2C) [59]. All algorithms receive the ag-
gregated belief state §; as input and output actions from Ayy,e. The algorithm-specific hyperparam-
eters were selected following reproducible configurations from canonical literature, for example,
PPO [38], DQN [37], A2C [60] and validated through small-scale tuning experiments to ensure
stable convergence. Configurations of each algorithm can be found in Appendix A

6. EXPERIMENTS PERFORMED AND EVALUATION METRICS

To train, validate, and test our Blue agent architecture, we conducted experiments in a simulated net-
work environment using CyberBattleSim, an open-source simulation environment by Microsoft [19].
All experiments were conducted on a Linux virtual machine with 4 CPU cores, 16 GB RAM, and
484.5 GB storage (no GPU) [19]. Two LAN environments were configured: a 7-node LAN and a
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14-node LAN, as shown in FIGURE 3 and in FIGURE 12 (Appendix B) respectively. The 7-node
LAN comprised four heterogeneous workstations (Windows, Ubuntu, and Linux), one e-commerce
web site, one web directory, and a central web server, capturing both diversity of endpoints and
high-value services commonly targeted by ransomware [32]. For scalability tests, the 14-node LAN
expanded this setup with six workstations, four critical sites (two e-commerce sites and two directo-
ries), and four servers (two web servers, an application server, and a database). This configuration
reflects the complexity of enterprise networks, with redundant services and databases that enlarge
the attack surface and increase the number of attractive targets [61].

LAN SERVER
WORKSTATIONS

Windows. Ubuntu omnjerce Web
Blue Agem
/ =
Wmdows
\5[7“){
"h.]

Figure 3: 7-node LAN - One of the workstations is the entry point for the Red agent. The Blue agent
does not begin from any node but is instead stationed at a defender-controlled position at
the start of the simulation.

kil

Web Server

Web Directory

6.1 Simulation Environment and Game Flow.

The simulation environment formalizes the cyber defense problem as a turn-based, episodic game
between the defender Blue Agent and the worm ransomware Red Agent. The game proceeds in
discrete time steps ¢ until an episode termination condition is met. Both agents maintain probabilistic
beliefs over the network state using neural particle filtering.

1. Red agent action: The Red agent selects an attack action a'® based on its particle-filtered
belief of the network state.

2. Environment update: The environment state S, transitions to S;.; according to ared.

3. Blue agent observation: The multi detection system generates observations for the Blue agent.
These observations are weighted by the Trust module and fused via particle filtering to produce
the belief state B; 1.

4. Blue agent action selection and safety: The Blue Agent selects a defensive action a'j}r“f based
on B;;1. The Shielding module evaluates the action, modifying unsafe actions to safer alter-

natives a’ '+l before execution.

5. State update and learning: The environment updates based on executed actions. Both agents
update their policies using their respective rewards. The Blue agent’s reward may be penal-
ized by the Shielding module, whereas the RL Red agent learns without trust or shielding
constraints.
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An episode ends if:

1. The Red agent successfully reach the final node (critical server) and exfiltrates or encrypts
data from that node.

2. The Blue agent successfully fix all nodes to a Normal condition including removing the Red
agent from the network or exhaust Red agent actions.

3. The maximum number of time steps (Tiax) is reached, also referred to as an Episode timeout.

6.2 RL Red Agent Formulation

We modeled the Red agent under two paradigms: a rule-based adversary following scripted at-
tack strategies with predefined progression paths, and an adaptive learning adversary trained via
reinforcement learning (PPO) that dynamically adjusts its strategy based on Blue’s defenses.To
understand how the red agent process its information, we created a scan function as its detection
model. In contrast to the Blue agent, which uses detectors to derive observations, the Red agent
gathers information through an active scan function S;.q. This function probes the environment and
returns a structured observation vector:

Ored = {Acurr’ Btgta CcurrStat’ D tgtStats, Eneigh, Fereds» GneighVula H, currVul}

where:

* Acur: current Red agent position,

Big: target node under attack,
* Ceunstat: Scanned status of the current node,

* Digisiar: scanned status of the target node,

Eneigh: list of discovered neighbour nodes,
o Feqs: set of discovered credentials,
* Greighvul: vulnerabilities of neighbour nodes,

* H.urvu: vulnerabilities of the current node.

Scanned status of the current node, Ceynstat, and scanned status of the target node, Dgstat, can be
one of the following:

* red_installed: the Red agent is installed in the node,
» encryption: the node’s files are encrypted,

* owned: the node is fully controlled via privilege escalation,
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* stopped: the node is inactive or unavailable,

» running: the node is operational and unaffected.

To model uncertainty, S;q applies rule-based scoring to each attribute, converting the evidence
into probabilities with the softmax function (Eq. 6). The final observation is thus a probabilistic
estimate of the environment from the attacker’s perspective, reflecting noisy reconnaissance rather
than ground truth. The RL Red agent is formalised as a POMDP, introduced earlier, just as the Blue
agent. The RL Red agent’s action space is

scan,
install_self,
local_privilege_escalation,
remote_privilege_escalation,
lateral_move,

Ajeq = {file_encryption,
local_sql_injection,
remote_sql_injection,
denial_of_service,
hide_self,

do_nothing
The RL Red agent observation is:

Acurr (current Red agent position),

Bigt (target node),

Ceurrstat (scanned status of current node),
Digisiar (scanned status of target node),
Orea = Epcign (discovered neighbour nodes),
Fregs (discovered credentials),

Gheighvul (vulnerabilities of neighbour nodes),

Hyirva (Vulnerabilities of current node)

To enable symmetric partial observability, the RL Red agent implements the same belief-tracking
architecture as the Blue agent, using transition and observation models with particle filtering to
maintain probabilistic beliefs. In a simplified way, the Red agent is rewarded for spreading through
the network, escalating privileges, and successfully reaching high-value targets, for example the
Web Server in the 7-node LAN or the Database Server in the 14-node LAN. Terminal rewards are
assigned when either agent achieves its win condition.

6.3 Experiments and Results

TABLE 2 and TABLE 3 show the experiments that were conducted and evaluation metrics respec-
tively. Our experiments are organized into five phases: Algorithm Selection, Detection Scheme
Evaluation, Scalability, Validation, and Benchmarking. All experiments were conducted with 5
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Table 2: Summary of experiments performed.

Setting Blue Agent Variants Opponent

7 nodes PPO, DQN, A2C (baseline) Rule-based Red
PPO, DQN, A2C (trust only) Rule-based Red
PPO, DQN, A2C (shield only) Rule-based Red
PPO, DQN, A2C (shield + trust) Rule-based Red
PPO, DQN, A2C (single detector) Rule-based Red

14 nodes (scalability) Best Blue from 7-node (shield + trust) | Rule-based Red

14 nodes (adversarial) | Best Blue from 7-node (shield + trust) | RL Red (PPO)

Benchmark comparison | PPO (DLR-RM/stable-baselines3) Rule-based Red

Table 3: Evaluation metrics with formulas and interpretations.

Metric Formula Meaning
. N, i .
Win rate W= w Percentage of episodes where the Blue
episodes agent succeeds [37, 59].
1 I
Availability Lavaii = T Z l[at = | Fraction of steps where nodes are
loss =1 unavailable due to isolations across
isolate] episodes [62].
T
Data loss Ldata = Z l[at = reset] Count of unsafe resets on nodes across
=1 episodes [62].
N
_ 1 )
Average return | R = N Z R; Mean cumulative return per
i=1 episode [59].
Trust score Tiv1 =T + BT;(1 = T;) ¢; | Confidence in detectors, updated via

logistic growth based on correctness
feedback [50, 51].

KL divergence | Dkr, (P () = | Measures divergence between proba-
> P(i) log 58 bility distributions; lower values imply
higher policy stability [63].

independent runs using different random seeds (42, 123,456, 789, 1000) to ensure reliability. To for-
mally validate the performance differences, a one-way Analysis of Variance (ANOVA) and Mann-
Whitney U test was performed across algorithm groups, followed by post-hoc Tukey’s Honestly
Significant Difference (HSD) tests for pairwise comparisons [64]. Unless otherwise specified, all
reported performance differences are statistically significant at the p < 0.05 level.

6.3.1 Experiment A: Detection scheme evaluation

To empirically validate the contribution of Multi detection system against prior work’s reliance on
single detection system, we conducted a comparative analysis across three core algorithms: PPO,
DQN, and A2C on a 7-node environment against rule based Red agent. Each algorithm was trained
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Figure 4: PPO, DQN, and A2C. Each algorithm was trained and evaluated independently under two
distinct observation settings

and evaluated independently under two distinct detection settings: 1) The novel Multi detection
system, which uses both network and node detector outputs into observation, and 2) a traditional
Single detection system, which represents the standard observation space found in the existing
literature [12, 30, 55, 56] and modeled at 5.2. We tracked only average returns for this experiment to
see how each algorithm will perform in different detection settings. The performance comparison
illustrated in FIGURE 4 demonstrates that the Multi-detectors configuration achieves a superior and
near-optimal policy convergence across all tested algorithms. Specifically, the Multi-detectors PPO
agent converged to a stable mean expected return of 82.15 + 1.98, representing a substantially more
optimal policy than the Single-detector PPO, which stagnated at a return of 61.61 + 1.48. A similar
trend was observed for DQN, where the Multi-detectors agent exhibited stronger policy learning,
converging to an average return of 84.17 + 1.79, a marked improvement over the Single-detector
DQN’s suboptimal convergence to 62.63 + 1.34. Furthermore, the Multi-detectors A2C agent
demonstrated superior performance stability and convergence, reaching 78.36 + 1.96 compared to
the Single-detector agent’s 58.77 + 1.47 (ANOV A, p < 0.001).

6.3.2 Experiment b: Selection phase

This phase evaluated PPO, DQN, and A2C under four configurations against a rule-based Red agent
in a 7-node environment.

Focus on PPO: Across all metrics, the PPO algorithm demonstrated superior stability and final
performance. We focus on PPO figures in the main text, and complete figures for DQN and A2C
are provided in the supplementary material (https://github.com/VinceTaku/RL_training_
experiment_results).
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Figure 5: PPO average return over training episodes under different configurations (baseline, trust
only, shield only, shield + trust). Solid lines show mean across 5 random seeds; shaded
regions indicate +1 standard deviation.

Average Returns (Policy Performance). FIGURE 5 illustrates the PPO policy learning curves.
The dashed black line, representing a return of 100, signifies the environment survival threshold or
the minimum expected return required for a successful defense policy [25].

The combined Shield and Trust configuration achieved the most optimal policy, resulting in the
highest stable expected return of 141.97 + 2.82 and significantly exceeding the survival threshold.
The Shielding-only policy also demonstrated robust convergence and achieved a successful ex-
pected return beyond the threshold, stabilizing at 101.69 +1.72, and the Trust-only policy (110.68 +
2.90). Conversely, the baseline policy (82.15 + 1.98) failed to maintain an expected return above
the critical 100 threshold. Statistical analysis confirmed that PPO (Shield and Trust) achieved a
significantly higher mean return compared to all other configurations tested, including the best-
performing DQN configuration (Shield and Trust)(120.58 + 2.52) and A2C configuration (Shield
and Trust) (110.57 + 2.50) (Tukey’s HSD, p < 0.001), which are not shown in the main plot but
are in the supplement material (https://github.com/VinceTaku/RL_training experiment _
results).

Trust Dynamics. FIGURE 6 displays the evolution of detector trust scores. The Red Position
detector demonstrated the fastest convergence (plateauing at 0.98+0.02 by episode 150). The Status
Detector followed closely (0.97 + 0.03 around episode 200). The Attack Target detector exhibited
the slowest initial learning rate and delayed stabilisation at 0.96 + 0.03. This delay is attributed to
the inherent characteristics of the attack event itself. Consequently, the detector requires a longer
period of cumulative observation and learning to achieve better generalisation and confidence (trust)
compared to detectors tracking frequent state changes. All detectors converged to reliable trust
values by episode 300.
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Figure 6: Trust score evolution across training episodes for three detectors. Lines show mean trust
values; across 5 runs.

Safety Metrics. FIGURE 7 reports PPO’s data-loss resets and availability loss, demonstrating
the effect of the Probabilistic Shielding mechanism. The shielded PPO configurations (Shield and
ShieldTrust) show clear superiority, with both availability loss and data loss dropping to near-zero
(0.2 = 0.3%) by episode 200. In contrast, configurations without the shield persist at high data-loss
rates (around 5.0 + 0.6%) and elevated availability loss (approximately 1% and 2% for Trust-only
and NoShieldTrust, respectively).

DQN and A2C exhibit algorithm-specific safety behaviors (full results in supplementary materi-
als (https://github.com/VinceTaku/RL_training experiment results)). For availabil-
ity loss, non-shielded configurations remain unstable: A2C Trust-only fluctuates between 3.0—-3.5%
by episode 200 after an initial drop from 8%, while A2C NoShieldTrust converges to 1.0 — 1.8%
following a decrease from 7%. Shielded A2C configurations perform better: Shield-only converges
to 0.8 — 1.0%, and ShieldTrust to 2.0 — 3.0%. For data loss, shielded configurations were better,
achieving 2.0 — 2.5% and < 1% for ShieldTrust and Shield only respectively.

For DQN, availability loss converges across all configurations to 0.2 —0.5% after a significant drop
from 6%, comparable to PPO’s shielded configurations (p < 0.01). Data loss for DQN shows
minimal improvement: all configurations stabilize around 4.0 — 4.5%, with shielded configurations
slightly increasing from 3%, while non-shielded configurations remain unchanged throughout train-
ing. Overall, PPO demonstrates the strongest shield response, highlighting the pronounced impact
of Probabilistic Shielding.

Win Rates. TABLE 4 summarises the final win rates. The PPO with Shield and Trust configura-
tion achieved the highest win rate at 93 + 2%, showing the results were very consistent across the
independent training runs and representing a statistically significant improvement over both other
PPO’s configurations and other algorithms (Mann-Whitney U test, p < 0.01 [64]).
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Figure 7: Data-loss resets and availability loss for PPO under different configurations against a rule-

based Red agent in a 7-node environment. Lines show mean loss percentages; shaded
regions indicate +1 standard deviation across 5 runs.

Table 4: Win rates (%) of Blue agent algorithms against rule-based Red agent in 7-node
environment. Values show mean + standard deviation over 5 runs.

Algorithm | No S&T | Trust only | Shield only | Shield & Trust

PPO 62+ 3 57 +5 89 + 2 93 £2
DQN 66 + 6 69 £5 67 +4 70+5
A2C 64 +5 527 79+4 66 £ 6

Mean KL-Divergence. The KL-divergence results in Table 5 provide a measure of policy sta-
bility across algorithms and configurations, with lower values indicating more consistent action
distributions over time. PPO configurations with Shield and Trust achieve the most stable policies,
exhibiting the lowest KL values and minimal variance. A2C configurations show moderate stability,

with Shield+Trust improving over Shield-only. DQN configurations demonstrate the least stable
policies, with Shield+Trust performing slightly worse than Shield alone.
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Table 5: Mean KL-Divergence (+ std) across algorithms and configurations, ranked by policy
stability (lower is better).

Rank Algorithm Mean KL | Std. Dev.
1 (Best) | PPO + Shield + Trust 0.010 0.001
2 PPO + Shield 0.013 0.002
3 A2C + Trust + Shield 0.021 0.004
4 A2C + Shield 0.039 0.005
5 DQN + Shield 0.055 0.007
6 (Worst) | DQN + Shield + Trust 0.058 0.008

6.3.3 Experiments C and D: Scalability and validation phase (14-node network)

This phase tested the PPO (Shield and Trust) model’s generalisation to a larger, more complex 14-
node network against both rule-based and RL-trained Red agents.

Training Time. Training time scaled from 10.2+0.8 hours (7-node) to 24.8 + 1.5 hours (14-node)
against the rule-based adversary, approximately 2.4x longer. Training against the RL-trained ad-
versary required 43.5 + 2.8 hours, an increase of approximately 1.75X over the rule-based adversary
on the same network size.

Average Returns and Win Rate (Policy Performance). FIGURE 8, shows the average return
comparing two opponent policy strategies on the 14-node network. Against the rule-based Red
policy (green curve), the Blue agent demonstrates rapid policy learning, consistently exceeding the
100 expected return threshold by episode 100 and achieving stable expected returns of 115.56 +
1.35 in the final 400 episodes with a win rate of 95 + 2%. Conversely, against the adaptive,
RL-trained Red policy (blue curve), the Blue agent’s policy convergence is slower, reaching the
threshold by episode 150 and stabilizing around 105.23 + 1.38 in the final 400 episodes. The
rule based opponent yields statistically superior overall performance compared to the adaptive RL
opponent policy (Mann-Whitney U test, p < 0.01). The RL Red agent’s policy exhibits significantly
higher variance between episodes 200—600, with periodic performance oscillations. Despite these
differences, the Blue agent’s defense policy in both scenarios converges above 105 return in later
episodes, maintaining performance above the success threshold, and achieving a 95 + 2% win rate
against the fixed opponent and a 73 + 3% win rate against the adaptive, learning-based opponent.

Data Loss and Availability Loss. FIGURE 9 and 10, show the safety metrics across both op-
ponent types. For availability loss, both scenarios show similar initial decline, stabilizing around
0.5 £ 0.3% (rule-based) and 1.2 + 0.8% (RL-trained) by episode 200. The RL scenario exhibits
more persistent sporadic spikes throughout training. For data loss, the rule-based scenario reaches
0.4 + 0.3% by episode 200 and remains minimal thereafter. In contrast, the RL scenario shows a
gradual increase after episode 400, stabilizing around 2.3 + 0.5% for episodes 600—1000, compared
to 0.2 + 0.2% in the rule-based scenario.
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Figure 8: Blue agents with shield and trust average return comparison between rule-based and RL-
trained red opponents on the 14-node network (Mean + Std Dev, 5 seeds).
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Figure 9: Availability loss comparison for PPO with shield and trust against rule-based and RL-
trained Red agents in 14-node environment. Lines show mean loss percentages; shaded
regions indicate +1 standard deviation across 5 runs.

6.3.4 Experiment e: Benchmarking

We compared our approach to a standard PPO implementation (DLR-RM/stable-baselines3) [56], in
the 7-node environment against rule-based Red agent. The standard PPO benchmark was trained us-
ing the identical observation space, belief representation, network architecture, and reward function
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Figure 10: Data-loss resets comparison for PPO with shield and trust against rule-based and RL-
trained Red agents in 14-node environment. Lines show mean loss percentages; shaded
regions indicate +1 standard deviation across 5 runs.

as our full PPO (Shield and Trust) model. This methodology ensures that the observed performance
differences are isolated and directly attributable to the presence or absence of our proposed Trust
and Shield mechanisms. FIGURE 11, shows the benchmark agent’s learning progression. The
benchmark agent showed highly unstable performance, with returns declining progressively after
episode 400 and stabilising around average return of 48.87 + 2.75. The final win rate was 32 + 1%.

6.3.5 Training Performance and Profiling

Training times were: 7-node environment (10.2 + 0.8 hours), 14-node environment (24.8 + 1.5
hours), and 14-node with learning adversary (43.5 + 2.8 hours) for 1000 episodes. The 2.4 times
scaling from 7 to 14 nodes reflects state space growth O (|Spede|X) and quadratic connection com-
plexity, while the 1.75 times increase for learning adversaries reflects co-adaptation dynamics.

Profiling reveals episodic neural network training accounts for 60% of total time (BeliefNet: 35%,

StateNet: 25%, RL updates: 40%), with particle filtering at 30% and trust/shielding negligible
(<1%).

7. DISCUSSION

This section interprets our experimental results in relation to identified research gaps, and research
questions mentioned earlier.
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Figure 11: Average return of the benchmark PPO algorithm against rule-based Red agent in 7-
node environment. Line shows mean across 5 runs; shaded region indicates +1 standard
deviation.

7.1 Multi Detectors System

Experiment A’s consistent average return improvement across all algorithms (PPO, DQN, A2C)
when using multi detection versus single detection reveals a fundamental limitation in prior work [ 18,
25]. Single detectors proved to create information bottlenecks that may affect agent learning ca-
pacity. Network detector observe traffic flows but miss local node status, node detector see node
status but miss attacker movement patterns. Neither alone provides sufficient context for the agent
to understand spreading attacks that exploit lateral movement, precisely the threat model worm
ransomware represents. With the multi-detection system, although each detector may be imperfect,
their combined use provides broader observation coverage across nodes and attributes, reduces
the variance in state estimation, and enhances the consistency of belief updates over time. This
improved state awareness allows the Blue agent to form a more close-to-accurate understanding of
the network’s state, leading to more stable policy gradients and more reliable learning regardless of
the underlying learning algorithm. This answers the research question, “"How does a multi-detector
system impact an RL agent s learning performance compared to a single-detector system in partially
observable network defense scenarios?”

7.2 Impact of Probabilistic Shielding

Probabilistic shielding affects each algorithm differently by controlling exploration away from un-
safe actions. Without shielding, agents exploit these actions for short-term rewards, creating unsafe
policies that ignore better long-term strategies. PPO benefits most from shielding, achieving the
highest performance (141.97 £ 2.82 return, 93% win rate) with minimal safety violations. Low
KL-divergence (0.010) confirms stable policy updates. A2C shows mixed results. It effectively
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reducing data loss but struggling with availability loss due to high-variance gradients and limited
exploration under constraints. DQN reduces availability loss but fails to prevent unsafe resets due
to off-policy learning and uniform replay buffer sampling that ignores shielded probabilities.

From the results, three conditions we concluded that enable effective shielding: (i) sufficient explo-
ration diversity, (ii) stable policy gradients, and (iii) on-policy or prioritized learning that respects
shielded probabilities. PPO satisfies all three; A2C and DQN do not. Against the learning Red
agent (Experiment D), PPO’s small increase in data loss (0.4% to 1.1%) while maintaining 73%
win rate demonstrates adaptive safety meaning the shield dynamically adjusts constraints based on
threat level without compromising defensive effectiveness. This addresses the question, “How well
does probabilistic shielding help reinforcement learning agents explore safely and prevent data or
service loss without hurting their performance?”

7.3 Impact of Trust

Trust alone improves short-term returns but not win rates. For PPO, trust increases return from 82.15
to 110.68 but decreases win rate from 62% to 57%. Trust improves state estimation by weighting
reliable detectors more heavily, enabling better short-term decisions. However, without shield-
ing, agents execute unsafe strategies more confidently rather than learning safer ones. Combining
Trust and Shield proved to be more beneficial as PPO achieves 141.97 return and 93% win rate
(versus 101.69 and 89% with shielding alone). Shielding constrains exploration to safe regions;
trust improves decision accuracy within those regions. Trust proves most valuable by preventing
overreliance on uncertain observations from detectors.

To answer this research question, "How do trust mechanisms improve agent learning under noisy
detector observations, and how does trust interact with shielding to enhance policy safety and effec-
tiveness?”, we conclude that trust helps the agent learn better under noisy detector observations by
giving more weight to accurate detectors and reducing the impact of false readings. This improves
state estimation and makes learning more stable. However, trust alone does not make the agent safer,
it only improves perception. When combined with probabilistic shielding, trust enhances both safety
and performance: shielding keeps the agent’s actions within safe limits, while trust ensures accurate
decisions within that safe space. Together, they lead to safer and more effective policy learning.

7.4 Blue Agent Against Rule-Based and Learning Red Agent

Experiments C and D show how the Blue agent performs against two different types of Red agents.
Against the rule-based Red agent, which follows fixed attack patterns, the Blue agent learns faster
and performs better because the opponent’s actions are predictable. This stable environment helps
the Blue agent quickly find effective defense strategies. In contrast, the RL-trained Red agent is
more challenging because it learns and changes its behavior over time. This makes the Blue agent’s
learning less stable, with more variation in performance, since both sides keep adapting to each other.
Although the rule-based Red agent is useful for early training and testing, the learning Red agent
provides a more realistic and difficult test of the Blue agent’s ability to adapt and remain effective.
The Blue agent still keeps its performance above the survival threshold in both cases, showing strong
resilience. However, the higher variation against the learning Red agent shows that perfect stability
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is hard to achieve in adaptive, adversarial environments. Finally, the Blue agent keeps availability
loss near zero against both Red agents, showing the shield’s reliability in controlling isolations. The
small increase in data loss after episode 400 reflects an ongoing battle when the Red agent learns
new attack patterns, the Blue agent must adjust its safety limits to respond.

7.5 Benchmark PPO versus PPO RL with Shield and Trust

Experiment E’s benchmark poor performance (achieving only 48.87 + 2.75 average return and 32 +
1% win rate) versus our PPO with Shield and Trust configuration reveals two compounding failure
modes, rooted in a fundamental lack of generalization. The standard PPO agent, optimized for a
simpler training environment, fails to generalize effectively to the conditions of our more complex
simulation. The poor performance specifically after episode 400 suggests policy collapse, indicating
the agent converged to a fundamentally unstable strategy that actively worsens outcomes when
faced with complexity. Our Shield and Trust configuration, by contrast, shows stable or improving
performance because shielding prevents convergence to destabilizing policies and trust maintains
belief integrity under observation noise.

7.6 Scalability and Generalization

When scaling to 14 nodes, whether trained against rule-based or learning Red agents, the Blue
agent maintained average returns above the threshold and reasonably high win rates, highlighting
the strong of belief maintenance. Sustained performance despite a 2.4X increase in training time
indicates that the neural observation and transition models generalize effectively, capturing under-
lying patterns in the environment rather than memorizing specific network configurations.

7.7 Comparison of Transformer-based RL agents and our approach

Our method differs from transformer-based RL agents such as Decision Transformer [65], Trajec-
tory Transformer [66], and Reinformer as summarized in Table 6. Transformers treat trajectories
as sequences and predict the next action using attention. They require large offline datasets and
do not explicitly use trust, shielding, or multiple detectors. Our approach uses belief-based inputs
from multiple detectors and updates policies online. We incorporate trust weighting, probabilistic
logic shielding, and multi-detector coordination. This allows fast adaptation to attacks, interpretable
decisions, and safe actions in LAN defense environments. Compared to transformers, our method
focuses on domain-specific performance and safety. However, our method requires careful tuning,
scales less easily to very large networks, and may underperform when trajectories are long or highly
stochastic.

8. CONCLUSION

This research tackled major limitations in previous RL-based cyber defense systems by combining
three key mechanisms: multi detection system, trust system, and probabilistic shielding. Exper-

367



https://cybersecurityjournal.info// | December 2025 Takudzwa V. Banda and Gavin B. Rens

Table 6: Comparison of Transformer-based RL agents and our approach.

Study / Approach | Model Type Learning | Environment| Notable Features
Setting
[65] (Decision | Transformer Offline MulJoCo, Predicts next action from
Transformer) policy RL Atari past trajectory + target
return
[66] (Multimodal | Multimodal Offline Simulated Separate embeddings for
Transformer RL) Transformer RL RL tasks states, actions, rewards;
improved offline perfor-
mance
(Reinformer) Transformer se- | Offline Standard Max-return sequence
quence model RL benchmarks | modeling; trajectory
(Gym) stitching for offline RL
Ours PPO + | Online LAN /| Multi-detector input, trust
structured RL CyberBat- weighting, shielding, pol-
policy/value tleSim icy shaped by node-level
networks observations

iments using PPO, DQN, and A2C in both 7-node and 14-node LANs showed the value of each
component. Multi detection system, which combines network-level and node-level observations,
consistently improved average returns for all algorithms, showing that having a complete view of
the network is essential for effective learning. Probabilistic shielding helped agents avoid unsafe
actions during training, reducing both data and availability losses while improving win rates. Trust-
based belief updates improved the accuracy of state estimates by weighting detector inputs based
on their historical reliability. Together, these mechanisms produced an RL agent that is aware
and safe against worm ransomware. The system scaled successfully to 14-node networks and
outperformed standard PPO baselines while keeping training times reasonable (10—44 hours on
CPU-only machines). This demonstrates progress toward practical, RL-based cyber defense.

However, some limitations remain. All tests were in simulation, so real-world factors like unex-
pected attack types, detector failures, or long-term changes are not fully captured. Training still
takes a long time, limiting fast adaptation to new attacks. Also, the current single-agent setup may
not scale well to very large networks that need decentralized decision-making.

As part of future work, we plan to validate our approach on real-world datasets such as CICIDS2017 [45]
and NSL-KDD. To improve efficiency, we aim to implement GPU-parallelized particle filtering to
accelerate training and develop incremental belief update algorithms that allow online adaptation

to emerging attack patterns. Scalability will be addressed through a hierarchical multi-agent sys-
tem, where local defenders manage network segments under a centralized coordinator and have a
cooperative defense. Finally, we will explore human-in-the-loop integration, designing interfaces
for security analysts to provide corrective feedback during operation.
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Appendix A. RL Algorithms Configurations

PPO Configuration. PPO uses experience replay (buffer size 10°), a clipped surrogate objective
with clip parameter € = 0.2, learning rate 3 X 10™%, GAE parameter A = 0.95, and update epochs
of 10 per rollout batch. The policy network consists of two hidden layers [256, 128] with tanh
activations. The Red agent, when learning-based, uses the same PPO configuration to ensure fair
comparison. PPO agents are trained in an offline manner at the end of each simulation episode.

DQN Configuration. DQN uses experience replay (buffer size 10°), target network updates every
1000 steps, e-greedy exploration with € annealing from 1.0 to 0.01 over 50,000 steps, learning rate
1074, and discount factor y = 0.99. The Q-network uses two hidden layers [256, 128] with ReLU
activations. DQN agents are trained in an offline manner at the end of each simulation episode.

A2C Configuration. A2C uses n-step returns with n = 5, learning rate 7 x 10~%, entropy coeffi-
cient 8 = 0.01 for exploration, and shared network architecture [256, 128] for both actor and critic.
A2C agents are trained in an online manner at the end of each simulation step.

Appendix B. 14-node Environment
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